Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(3): 2514-2527, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38534775

RESUMEN

There has been debate about whether individuals with different color phenotypes should have different taxonomic status. In order to determine whether the different color phenotypes of Nedyopus patrioticus require separate taxonomic status or are simply synonyms, here, the complete mitochondrial genomes (mitogenomes) of two different colored N. patrioticus, i.e., red N. patrioticus and white N. patrioticus, are presented. The two mitogenomes were 15,781 bp and 15,798 bp in length, respectively. Each mitogenome contained 13 PCGs, 19 tRNAs, 2 rRNAs, and 1 CR, with a lack of trnI, trnL2, and trnV compared to other Polydesmida species. All genes were located on a single strand in two mitogenomes. Mitochondrial DNA analyses revealed that red N. patrioticus and white N. patrioticus did not show clear evolutionary differences. Furthermore, no significant divergence was discovered by means of base composition analysis. As a result, we suggest that white N. patrioticus might be regarded as a synonym for red N. patrioticus. The current findings confirmed the existence of color polymorphism in N. patrioticus, which provides exciting possibilities for future research. It is necessary to apply a combination of molecular and morphological methods in the taxonomy of millipedes.

2.
Proc Natl Acad Sci U S A ; 121(13): e2318475121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466879

RESUMEN

Deforestation poses a global threat to biodiversity and its capacity to deliver ecosystem services. Yet, the impacts of deforestation on soil biodiversity and its associated ecosystem services remain virtually unknown. We generated a global dataset including 696 paired-site observations to investigate how native forest conversion to other land uses affects soil properties, biodiversity, and functions associated with the delivery of multiple ecosystem services. The conversion of native forests to plantations, grasslands, and croplands resulted in higher bacterial diversity and more homogeneous fungal communities dominated by pathogens and with a lower abundance of symbionts. Such conversions also resulted in significant reductions in carbon storage, nutrient cycling, and soil functional rates related to organic matter decomposition. Responses of the microbial community to deforestation, including bacterial and fungal diversity and fungal guilds, were predominantly regulated by changes in soil pH and total phosphorus. Moreover, we found that soil fungal diversity and functioning in warmer and wetter native forests is especially vulnerable to deforestation. Our work highlights that the loss of native forests to managed ecosystems poses a major global threat to the biodiversity and functioning of soils and their capacity to deliver ecosystem services.


Asunto(s)
Ecosistema , Microbiota , Suelo/química , Conservación de los Recursos Naturales , Biodiversidad , Bosques , Bacterias , Microbiología del Suelo
3.
Biotechnol J ; 19(2): e2300551, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403447

RESUMEN

Carbon catabolite repression (CCR) is a global regulatory mechanism that allows organisms to preferentially utilize a preferred carbon source (usually glucose) by suppressing the expression of genes associated with the utilization of nonpreferred carbon sources. Aspergillus is a large genus of filamentous fungi, some species of which have been used as microbial cell factories for the production of organic acids, industrial enzymes, pharmaceuticals, and other fermented products due to their safety, substrate convenience, and well-established post-translational modifications. Many recent studies have verified that CCR-related genetic alterations can boost the yield of various carbohydrate-active enzymes (CAZymes), even under CCR conditions. Based on these findings, we emphasize that appropriate regulation of the CCR pathway, especially the expression of the key transcription factor CreA gene, has great potential for further expanding the application of Aspergillus cell factories to develop strains for industrial CAZymes production. Further, the genetically modified CCR strains (chassis hosts) can also be used for the production of other useful natural products and recombinant proteins, among others. We here review the regulatory mechanisms of CCR in Aspergillus and its direct application in enzyme production, as well as its potential application in organic acid and pharmaceutical production to illustrate the effects of CCR on Aspergillus cell factories.


Asunto(s)
Represión Catabólica , Represión Catabólica/genética , Hongos/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Glucosa/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/metabolismo
4.
Glob Chang Biol ; 29(24): 7159-7172, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37830780

RESUMEN

The frequency and intensity of droughts worldwide are challenging the conservation of soil organic carbon (SOC) pool. Microbial necromass is a key component of SOC, but how it responds to drought at specific soil depths remains largely unknown. Here, we conducted a 3-year field experiment in a forest plantation to investigate the impacts of drought intensities under three treatments (ambient control [CK], moderate drought [30% throughfall removal], and intensive drought [50% throughfall removal]) on soil microbial necromass pools (i.e., bacterial necromass carbon, fungal necromass carbon, and total microbial necromass carbon). We showed that the effects of drought on microbial necromass depended on microbial groups, soil depth, and drought intensity. While moderate drought increased total (+9.1% ± 3.3%) and fungal (+13.5% ± 4.9%) necromass carbon in the topsoil layer (0-15 cm), intensive drought reduced total (-31.6% ± 3.7%) and fungal (-43.6% ± 4.0%) necromass in the subsoil layer (15-30 cm). In contrast, both drought treatments significantly increased the BNC in the topsoil and subsoil. Our results suggested that the effects of drought on the microbial necromass of the subsoil were more pronounced than those of the topsoil. This study highlights the complex responses of microbial necromass to drought events depending on microbial community structure, drought intensity and soil depth with global implications when forecasting carbon cycling under climate change.


Asunto(s)
Sequías , Suelo , Carbono , Bosques , Ciclo del Carbono , Microbiología del Suelo
5.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37628925

RESUMEN

Studies on the degradation of plant cell wall polysaccharides by fungal extracellular enzymes have attracted recent attention from researchers. Xylan, abundant in hemicellulose, that play great role in connection between cellulose and lignin, has seen interest in its hydrolytic enzymatic complex. In this study, dozens of fungus species spanning genera were isolated from rotting leaves based on their ability to decompose xylan. Among these isolates, a strain with strong xylanase-producing ability was selected for further investigation by genome sequencing. Based on phylogenetic analysis of ITS (rDNA internal transcribed spacer) and LSU (Large subunit 28S rDNA) regions, the isolate was identified as Penicillium oxalicum. Morphological analysis also supported this finding. Xylanase activity of this isolated P. oxalicum 5-18 strain was recorded to be 30.83 U/mL using the 3,5-dinitro-salicylic acid (DNS) method. Further genome sequencing reveals that sequenced reads were assembled into a 30.78 Mb genome containing 10,074 predicted protein-encoding genes. In total, 439 carbohydrate-active enzymes (CAZymes) encoding genes were predicted, many of which were associated with cellulose, hemicellulose, pectin, chitin and starch degradation. Further analysis and comparison showed that the isolate P. oxalicum 5-18 contains a diverse set of CAZyme genes involved in degradation of plant cell wall components, particularly cellulose and hemicellulose. These findings provide us with valuable genetic information about the plant biomass-degrading enzyme system of P. oxalicum, facilitating a further exploration of the repertoire of industrially relevant lignocellulolytic enzymes of P. oxalicum 5-18.


Asunto(s)
Lignina , Xilanos , Filogenia , Celulosa , ADN Ribosómico
6.
J Fungi (Basel) ; 9(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37367541

RESUMEN

Low density polyethylene (LDPE) has been widely used commercially for decades; however, as a non-degradable material, its continuous accumulation has contributed to serious environmental issues. A fungal strain, Cladosporium sp. CPEF-6 exhibiting a significant growth advantage on MSM-LDPE (minimal salt medium), was isolated and selected for biodegradation analysis. LDPE biodegradation was analyzed by weight loss percent, change in pH during fungal growth, environmental scanning electron microscopy (ESEM), and Fourier transformed infrared spectroscopy (FTIR). Inoculation with the strain Cladosporium sp. CPEF-6 resulted in a 0.30 ± 0.06% decrease in the weight of untreated LDPE (U-LDPE). After heat treatment (T-LDPE), the weight loss of LDPE increased significantly and reached 0.43 ± 0.01% after 30 days of culture. The pH of the medium was measured during LDPE degradation to assess the environmental changes caused by enzymes and organic acids secreted by the fungus. The fungal degradation of LDPE sheets was characterized by ESEM analysis of topographical alterations, such as cracks, pits, voids, and roughness. FTIR analysis of U-LDPE and T-LDPE revealed the appearance of novel functional groups associated with hydrocarbon biodegradation as well as changes in the polymer carbon chain, confirming the depolymerization of LDPE. This is the first report demonstrating the capacity of Cladosporium sp. to degrade LDPE, with the expectation that this finding can be used to ameliorate the negative impact of plastics on the environment.

7.
Microorganisms ; 10(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36557615

RESUMEN

Phosphorus is one of the main nutrients necessary for plant growth and development. Phosphorus-dissolving microorganisms may convert insoluble phosphorus in soil into available phosphorus that plants can easily absorb and utilize. In this study, four phosphorus-solubilizing fungi (L3, L4, L5, and L12) were isolated from the rhizosphere soil of a poplar plantation in Dongtai, Jiangsu Province, China. Phylogenetic analysis based on the internal transcribed spacer (ITS) and large subunit (LSU) of the ribosomal DNA sequences showed that the ITS and 28S sequences of isolates were the most similar to those of Mortierella. Morphological observation showed that most colonies grew in concentric circles and produced spores under different culture conditions. These results and further microscopic observations showed that these isolated fungi belonged to the genus Mortierella. Pikovskaya (PKO) medium, in which tricalcium phosphate was the sole phosphorus source, was used to screen strain L4 with the best phosphorus-solubilizing effect for further study. When the carbon source was glucose, the nitrogen source was ammonium chloride, the pH was 5, and the available phosphorus content was the highest. By exploring the possible mechanism of phosphorus release by phosphorus-solubilizing fungi, it was found that strain L4 produces several organic acids, such as oxalic acid, lactic acid, acetic acid, succinic acid, tartaric acid, malic acid, and citric acid. At 24 h, the alkaline phosphatase and acid phosphatase activities reached 154.72 mol/(L·h) and 120.99 mol/(L·h), respectively.

8.
J Fungi (Basel) ; 8(12)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36547585

RESUMEN

The majority of terrestrial plants are symbiotic with arbuscular mycorrhizal fungi (AMF). Plants supply carbohydrates to microbes, whereas AMF provide plants with water and other necessary nutrients-most typically, phosphorus. Understanding the response of the AMF community structure to biogas slurry (BS) fertilization is of great significance for sustainable forest management. This study aimed to look into the effects of BS fertilization at different concentrations on AMF community structures in rhizospheric soil in poplar plantations. We found that different fertilization concentrations dramatically affected the diversity of AMF in the rhizospheric soil of the poplar plantations, and the treatment with a high BS concentration showed the highest Shannon diversity of AMF and OTU richness (Chao1). Further analyses revealed that Glomerales, as the predominant order, accounted for 36.2-42.7% of the AMF communities, and the relative abundance of Glomerales exhibited negligible changes with different BS fertilization concentrations, whereas the order Paraglomerales increased significantly in both the low- and high-concentration treatments in comparison with the control. Furthermore, the addition of BS drastically enhanced the relative abundance of the dominant genera, Glomus and Paraglomus. The application of BS could also distinguish the AMF community composition in the rhizospheric soil well. An RDA analysis indicated that the dominant genus Glomus was significantly positively correlated with nitrate reductase activity, while Paraglomus showed a significant positive correlation with available P. Overall, the findings suggest that adding BS fertilizer to poplar plantations can elevate the diversity of AMF communities in rhizospheric soil and the relative abundance of some critical genera that affect plant nutrient uptake.

9.
Front Microbiol ; 13: 1016610, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36274721

RESUMEN

The symbiotic relationship between ectomycorrhizal fungi (EMF) and the roots of host plants is significantly important in regulating the health and stability of ecosystems, especially of those such as the climate warming affected subalpine forest ecosystems. Therefore, from the coniferous forest systems located in the Southern Qinghai-Tibetan Plateau, root tips from three forest tree species: Pinus wallichiana, Abies spectabilis and Picea spinulosa, were collected to look for the local causes of EMF community composition and diversity patterns. The EMF colonization rate, diversity and taxonomic community structure were determined by morphotyping and sanger sequencing of the fungal ITS gene from the root tip samples. Soil exploration types were identified based on the morphologies of the ectomycorrhizas, coupled with soil properties analysis and plant diversity survey. Contrasting patterns of EMF community and functional diversity were found across the studied three forests types dominated by different coniferous tree species. In terms of associations between soil and EMF properties, the total phosphorus (TP) and nitrate (NO3 -) contents in soil negatively correlated with the colonization rate and the Shannon diversity index of EMF in contrast to the positive relationship between TP and EMF richness. The soil total nitrogen (TN), ammonium (NH4 +) and plant diversity together caused 57.6% of the total variations in the EMF taxonomic community structure at the three investigated forest systems. Whereas based on the soil exploration types alone, NH4 + and TN explained 74.2% of variance in the EMF community structures. Overall, the findings of this study leverage our understanding of EMF dynamics and local influencing factors in coniferous forests dominated by different tree species within the subalpine climatic zone.

10.
Glob Chang Biol ; 28(24): 7353-7365, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36056683

RESUMEN

Carbon (C):nitrogen (N):phosphorus (P) stoichiometry in plants, soils, and microbial biomass influences productivity and nutrient cycling in terrestrial ecosystems. Anthropogenic inputs of P to ecosystems are increasing; however, our understanding of the impacts of P addition on terrestrial ecosystem C:N:P ratios remains elusive. By conducting a meta-analysis with 1413 paired observations from 121 publications, we showed that P addition significantly decreased plant, soil, and microbial biomass N:P and C:P ratios, but had negligible effects on C:N ratios. The reductions in N:P and C:P ratios became more evident as the P application rates and experimental duration increased. The P addition effects on terrestrial ecosystem C:N:P stoichiometry did not vary with ecosystem types or climates. Moreover, the responses of N:P and C:P ratios in soil and microbial biomass were associated with the responses of soil pH and fungi:bacteria ratios. Additionally, P additions increased net primary productivity, microbial biomass, soil respiration, N mineralization, and N nitrification, but decreased ammonium and nitrate contents. Decreases in plant N:P and C:P ratios were both negatively correlated to net primary productivity and soil respiration, but positively correlated to ammonium and nitrate contents; microbial biomass, soil respiration, ammonium contents, and nitrate contents all increased with declining soil N:P and C:P ratios. Our findings highlight that P additions could imbalance C:N:P stoichiometry and potentially impact the terrestrial ecosystem functions.


Asunto(s)
Compuestos de Amonio , Fósforo , Fósforo/química , Ecosistema , Nitratos , Nitrógeno/análisis , Suelo/química , Carbono/química , Biomasa , Microbiología del Suelo , Plantas
11.
Genes (Basel) ; 13(9)2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36140755

RESUMEN

Millipedes (Diplopoda) comprise one of the most important groups of large soil arthropods in terrestrial ecosystems; however, their phylogenetic relationships are poorly understood. Herein, the mitochondrial genome (mitogenome) of Spirobolus bungii was sequenced and annotated, which was 14,879 bp in size and included 37 typical mitochondrial genes (13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs)). Most of the 13 PCGs had ATN (AT/A/T/G) as the start codon except for COX1, which used CGA, and most PCGs ended with the T end codon. By comparing the gene arrangements of the mitogenomes among Diplopoda species, rearrangement occurred between and within orders. In contrast to Narceus annularus, the mitogenome genes of S. bungii had consistent orders but were transcribed in completely opposite directions, which was a novel finding in Spirobolidae. Moreover, the phylogenetic relationships within Diplopoda, which were based on the sequences of 13 PCGs, showed that S. bungii was clustered with N. annularus, followed by Abacion magmun. This indicated that there might be a close relationship between Callipodida and Spirobolida. These results could contribute to further studies on the genetics and evolutionary processes of S. bungii and other Diplopoda species.


Asunto(s)
Artrópodos , Genoma Mitocondrial , Animales , Artrópodos/genética , Composición de Base , Codón/genética , Codón Iniciador , Ecosistema , Genoma Mitocondrial/genética , Filogenia , ARN de Transferencia/genética , Suelo
12.
Insects ; 13(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36005354

RESUMEN

Soil macrofauna, such as Spirobolus bungii, are an important component of ecosystems. However, systematic studies of the genetic diversity, population genetic structure, and the potential factors affecting the genetic differentiation of S. bungii are lacking. We performed a population genetic study of 166 individuals from the mountains to the south of the Yangtze River, north of the Yangtze River in Nanjing city, and near Tianjin city, in order to investigate the correlations between geographical distance and genetic diversity. A total of 1182 bp of COX2 and Cytb gene sequences of mitochondrial DNA, and 700 bp of the 18S rRNA gene sequence were analyzed. There were two haplotypes and one variable site in the 18S rRNA gene, and 28 haplotypes and 78 variable sites in the COX2 and Cytb genes. In this study, the 18S rRNA gene was used for species identification, and mtDNA (concatenated sequences with Cytb and COX2) was used for population genetic analysis. Structure cluster analysis indicated that the genetic structures of the different populations of S. bungii tended to be consistent at small geographical scales. Phylogenetic trees revealed that the haplotypes were clearly divided into three branches: the area south of the Yangtze River, the area to the north of the Yangtze River in Nanjing, and the area in Tianjin. Large geographical barriers and long geographical distance significantly blocked gene flow between populations of S. bungii. Our results provide a basic theoretical basis for subsequent studies of millipede taxonomy and population genetic evolution.

13.
Ann N Y Acad Sci ; 1516(1): 123-134, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35879250

RESUMEN

Many natural objects exhibit radial or axial symmetry in a single plane. However, a universal tool for simulating and fitting the shapes of such objects is lacking. Herein, we present an R package called 'biogeom' that simulates and fits many shapes found in nature. The package incorporates novel universal parametric equations that generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and tree-rings, and three growth-rate equations that generate the profiles of ovate leaves and the ontogenetic growth curves of animals and plants. 'biogeom' includes several empirical datasets comprising the boundary coordinates of bird eggs, fruits, lanceolate and ovate leaves, tree rings, seeds, and sea stars. The package can also be applied to other kinds of natural shapes similar to those in the datasets. In addition, the package includes sigmoid curves derived from the three growth-rate equations, which can be used to model animal and plant growth trajectories and predict the times associated with maximum growth rate. 'biogeom' can quantify the intra- or interspecific similarity of natural outlines, and it provides quantitative information of shape and ontogenetic modification of shape with important ecological and evolutionary implications for the growth and form of the living world.


Asunto(s)
Evolución Biológica , Hojas de la Planta , Animales , Frutas , Semillas
14.
Methods Mol Biol ; 2408: 317-324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35325432

RESUMEN

One of the strategies to reduce the off-target mutations in CRISPR/Cas9 system is to use the temperature-independent gene transformation method. Mesoporous silica nanoparticles (MSNs)-gene delivery system is temperature-independent; thus, it can transfer the interesting plasmid (pDNA) to the target plant at different temperatures, including 37 °C. Due to the high activity of SpCas9 at 37 °C compared to lower temperatures, on-target mutagenesis increases at 37 °C. Therefore, we describe the synthesis of the functionalized MSNs with the particle size of less than 40 nm, binding pDNA to the MSNs, and transferring of the pDNA-MSNs into the target plants.


Asunto(s)
Sistemas CRISPR-Cas , Dióxido de Silicio , Sistemas CRISPR-Cas/genética , Mutagénesis , Mutación , Plásmidos/genética
15.
J Fungi (Basel) ; 7(10)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34682213

RESUMEN

The continuous upsurge in soil nitrogen (N) enrichment has had strong impacts on the structure and function of ecosystems. Elucidating how plant ectomycorrhizal fungi (EMF) mutualists respond to this additional N will facilitate the rapid development and implementation of more broadly applicable management and remediation strategies. For this study, we investigated the responses of EMF communities to increased N, and how other abiotic environmental factors impacted them. Consequently, we conducted an eight-year N addition experiment in a poplar plantation in coastal eastern China that included five N addition levels: 0 (N0), 50 (N1), 100 (N2), 150 (N3), and 300 (N4) kg N ha-1 yr-1. We observed that excessive N inputs reduced the colonization rate and species richness of EMF, and altered its community structure and functional traits. The total carbon content of the humus layer and available phosphorus in the mineral soil were important drivers of EMF abundance, while the content of ammonium in the humus layer and mineral soil determined the variations in the EMF community structure and mycelium foraging type. Our findings indicated that long-term N addition induced soil nutrient imbalances that resulted in a severe decline in EMF abundance and loss of functional diversity in poplar plantations.

16.
Sci Total Environ ; 794: 148572, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34214806

RESUMEN

Nitrous oxide (N2O) is a potent atmospheric greenhouse gas that is largely emitted from soils due to the enhanced use of reactive nitrogen in agriculture and plantations. In this study, we evaluated the N2O mitigation ability of biochar after 7 years of application in a poplar plantation. The field experiment was based on combinations of three biochar (0, 80, and 120 t ha-1) and four biogas slurry (0, 125, 250, and 375 m3 ha-1) rates following a factorial design. N2O flux rates were measured for seven consecutive months using in situ static chambers. Soil physicochemical characteristics, potential nitrification rate (PNR), denitrification (DEA), and N2O reduction were recorded once each in September 2019 and January 2020 via lab incubations. In addition, qPCR assays were used to assess the abundance of key nitrifying and denitrifying functional genes. Biochar application after 7 years had no significant effects on N2O flux rates, PNR, and DEA rates. However, a triggering effect of biogas slurry on soil N2O emission was observed, although there was no correlation between biogas slurry rates and N2O emission rates. Factorial ANOVA showed a significant effect of biogas slurry and its interaction with biochar on the relative abundance of bacterial denitrifying and nitrifying functional genes. Additionally, significant correlations of N2O emission rates with PNR rates and NO3- concentration indicated that nitrification was the dominant pathway of N2O emission. Thus, a single biochar application did not mitigate N2O emission rates induced by biogas slurry on a long-term scale.


Asunto(s)
Biocombustibles , Fertilizantes , Carbón Orgánico , Fertilizantes/análisis , Óxido Nitroso/análisis , Suelo
17.
Plant Physiol Biochem ; 166: 505-511, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34166977

RESUMEN

Polychlorinated biphenyls (PCBs) are a common category of persistent man-made organic pollutants that are widespread in the ambient environment. Although Lemna minor L. is an extensively applied plant for aquatic remediation in ecotoxicology research worldwide, little is known regarding its responses to the potentially toxic effects of PCBs. For this study, a 14-day dissolved exposure was conducted to explore the effects of 2,4,4'- trichlorobiphenyl (PCB-28) on the growth, photosynthesis characteristics and antioxidant defense system of L. minor plants. We found that 100 and 200 µg/L of PCB-28 decreased the fresh weight, chlorophyll and protein content, and activities of superoxide dismutase, peroxidase, glutathione S-transferase, and nitroreductase, whereas plasma membrane permeability, and the malondialdehyde and reactive oxygen species concentrations were increased. However, it was observed that 5 and 20 µg/L of PCB-28 had no significant effects on these physiological indices. The ultra-structure of chloroplast demonstrated that 100 and 200 µg/L PCB-28 severely damaged the chloroplast structures. Moreover, correlation analysis revealed that the content of reactive oxygen species had negative correlations with the fresh weight, chlorophyll and protein content, as well as the activities of superoxide dismutase, peroxidase, glutathione S-transferase, and nitroreductase, but had positive correlations with the malondialdehyde content and plasma membrane permeability. This work provides valuable data toward elucidating the physiology and biochemistry of PCBs induced phytotoxicity.


Asunto(s)
Araceae , Bifenilos Policlorados , Antioxidantes , Fotosíntesis , Bifenilos Policlorados/toxicidad
18.
Front Genet ; 12: 686246, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34168681

RESUMEN

The earthworm species Metaphire vulgaris (a member of the Clitellata class) is widely distributed across China, and has important ecological functions and medicinal value. However, investigations into its genetic diversity and differentiation are scarce. Consequently, we evaluated the genetic diversity of five populations of M. vulgaris (GM, HD, NYYZ, QDDY, and QDY) in Yancheng, China via the mitochondrial COI gene and the novel microsatellites developed there. A total of nine haplotypes were obtained by sequencing the mitochondrial COI gene, among which NYYZ and QDDY populations had the greatest number of haplotypes (nh = 5). Further, the nucleotide diversity ranged from 0.00437 to 0.1243. The neighbor-joining trees and the TCS network of haplotypes indicated that earthworm populations within close geographical range were not genetically isolated at these small scale distances. Results of the identification of microsatellite molecular markers revealed that the allele number in 12 microsatellite loci ranged from 4 to 13. The observed heterozygosity ranged from 0.151 to 0.644, whereas the expected heterozygosity ranged from 0.213 to 0.847. The polymorphism data content of most sites was >0.5, which indicated that the designed sites had high polymorphism. Structural analysis results indicated that GM, HD, and NYYZ had similar genetic structures across the five populations. The Nei's genetic distance between HD and NYYZ populations was the smallest (D s = 0.0624), whereas that between HD and QDY populations was the largest (D s = 0.2364). The UPGMA tree showed that HD were initially grouped with NYYZ, followed by GM, and then with QDDY. Furthermore, cross-species amplification tests were conducted for Metaphire guillelmi, which indicated that the presented markers were usable for this species. This study comprised a preliminary study on the genetic diversity of M. vulgaris, which provides basic data for future investigations into this species.

19.
Sci Total Environ ; 782: 146901, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33848873

RESUMEN

Terrestrial productivity underpins ecosystem carbon (C) cycling and multi-trophic diversity. Despite the negative impacts of drought on terrestrial C cycling, our understanding of the responses of above- and belowground productivity to drought remains incomplete. Here, we synthesized the responses of terrestrial productivity and soil factors (e.g., soil moisture, soil pH, soil C, soil nitrogen (N), soil C:N, fungi:bacteria ratio, and microbial biomass C) to drought via a global meta-analysis of 734 observations from 107 studies. Our results revealed that the productivity variables above- and belowground (i.e., net primary productivity, aboveground net primary productivity, belowground net primary productivity, total biomass, aboveground biomass, root biomass, gross ecosystem productivity, and net ecosystem productivity) were decreased across all ecosystems. However, drought did not significantly affect litter mass across all ecosystems, and the responses of above- and belowground productivity to drought were non-uniform. Furthermore, the responses of these productivity variables to drought were more pronounced with drought intensity and duration, and consistent across ecosystem types and background climates. Drought significantly decreased soil moisture, soil C concentrations, soil C:N ratios, and microbial biomass C, whereas it enhanced soil pH values and fungi:bacteria ratios. Moreover, the negative effects of drought on above- and belowground productivity variables were correlated mostly with the response of soil pH to drought among all soil factors. Our study indicated that litter biomass, which mostly represents productivity levels via traditional ecosystem models, was not able to predict the responses of terrestrial ecosystem productivity to drought. The strong relationship between the responses of soil pH and terrestrial productivity to drought suggests that the incorporation of soil pH into Earth system models might facilitate the prediction of terrestrial C cycling and its feedbacks to drought.


Asunto(s)
Sequías , Ecosistema , Biomasa , Nitrógeno/análisis , Suelo
20.
BMC Genomics ; 21(1): 778, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33167859

RESUMEN

BACKGROUNDS: Fatty acid desaturases (FADs) introduce a double bond into the fatty acids acyl chain resulting in unsaturated fatty acids that have essential roles in plant development and response to biotic and abiotic stresses. Wheat germ oil, one of the important by-products of wheat, can be a good alternative for edible oils with clinical advantages due to the high amount of unsaturated fatty acids. Therefore, we performed a genome-wide analysis of the wheat FAD gene family (TaFADs). RESULTS: 68 FAD genes were identified from the wheat genome. Based on the phylogenetic analysis, wheat FADs clustered into five subfamilies, including FAB2, FAD2/FAD6, FAD4, DES/SLD, and FAD3/FAD7/FAD8. The TaFADs were distributed on chromosomes 2A-7B with 0 to 10 introns. The Ka/Ks ratio was less than one for most of the duplicated pair genes revealed that the function of the genes had been maintained during the evolution. Several cis-acting elements related to hormones and stresses in the TaFADs promoters indicated the role of these genes in plant development and responses to environmental stresses. Likewise, 72 SSRs and 91 miRNAs in 36 and 47 TaFADs have been identified. According to RNA-seq data analysis, the highest expression in all developmental stages and tissues was related to TaFAB2.5, TaFAB2.12, TaFAB2.15, TaFAB2.17, TaFAB2.20, TaFAD2.1, TaFAD2.6, and TaFAD2.8 genes while the highest expression in response to temperature stress was related to TaFAD2.6, TaFAD2.8, TaFAB2.15, TaFAB2.17, and TaFAB2.20. Furthermore, docking simulations revealed several residues in the active site of TaFAD2.6 and TaFAD2.8 in close contact with the docked oleic acid that could be useful in future site-directed mutagenesis studies to increase the catalytic efficiency of them and subsequently improve agronomic quality and tolerance of wheat against environmental stresses. CONCLUSIONS: This study provides comprehensive information that can lead to the detection of candidate genes for wheat genetic modification.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Triticum/genética , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...